Abstract:Artificial intelligence systems introduce complex privacy risks throughout their lifecycle, especially when processing sensitive or high-dimensional data. Beyond the seven traditional privacy threat categories defined by the LINDDUN framework, AI systems are also exposed to model-centric privacy attacks such as membership inference and model inversion, which LINDDUN does not cover. To address both classical LINDDUN threats and additional AI-driven privacy attacks, PriMod4AI introduces a hybrid privacy threat modeling approach that unifies two structured knowledge sources, a LINDDUN knowledge base representing the established taxonomy, and a model-centric privacy attack knowledge base capturing threats outside LINDDUN. These knowledge bases are embedded into a vector database for semantic retrieval and combined with system level metadata derived from Data Flow Diagram. PriMod4AI uses retrieval-augmented and Data Flow specific prompt generation to guide large language models (LLMs) in identifying, explaining, and categorizing privacy threats across lifecycle stages. The framework produces justified and taxonomy-grounded threat assessments that integrate both classical and AI-driven perspectives. Evaluation on two AI systems indicates that PriMod4AI provides broad coverage of classical privacy categories while additionally identifying model-centric privacy threats. The framework produces consistent, knowledge-grounded outputs across LLMs, as reflected in agreement scores in the observed range.
Abstract:The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.




Abstract:This work introduces ClustEm4Ano, an anonymization pipeline that can be used for generalization and suppression-based anonymization of nominal textual tabular data. It automatically generates value generalization hierarchies (VGHs) that, in turn, can be used to generalize attributes in quasi-identifiers. The pipeline leverages embeddings to generate semantically close value generalizations through iterative clustering. We applied KMeans and Hierarchical Agglomerative Clustering on $13$ different predefined text embeddings (both open and closed-source (via APIs)). Our approach is experimentally tested on a well-known benchmark dataset for anonymization: The UCI Machine Learning Repository's Adult dataset. ClustEm4Ano supports anonymization procedures by offering more possibilities compared to using arbitrarily chosen VGHs. Experiments demonstrate that these VGHs can outperform manually constructed ones in terms of downstream efficacy (especially for small $k$-anonymity ($2 \leq k \leq 30$)) and therefore can foster the quality of anonymized datasets. Our implementation is made public.