Alert button
Picture for Michael D. Abramoff

Michael D. Abramoff

Alert button

Automated segmentation of choroidal layers from 3-dimensional macular optical coherence tomography scans

Add code
Bookmark button
Alert button
Mar 11, 2021
Kyungmoo Lee, Alexis K. Warren, Michael D. Abramoff, Andreas Wahle, S. Scott Whitmore, Ian C. Han, John H. Fingert, Todd E. Scheetz, Robert F. Mullins, Milan Sonka, Elliott H. Sohn

Figure 1 for Automated segmentation of choroidal layers from 3-dimensional macular optical coherence tomography scans
Figure 2 for Automated segmentation of choroidal layers from 3-dimensional macular optical coherence tomography scans
Figure 3 for Automated segmentation of choroidal layers from 3-dimensional macular optical coherence tomography scans
Figure 4 for Automated segmentation of choroidal layers from 3-dimensional macular optical coherence tomography scans
Viaarxiv icon

Optimal Multiple Surface Segmentation with Convex Priors in Irregularly Sampled Space

Add code
Bookmark button
Alert button
May 16, 2017
Abhay Shah, Junjie Bai, Michael D. Abramoff, Xiaodong Wu

Figure 1 for Optimal Multiple Surface Segmentation with Convex Priors in Irregularly Sampled Space
Figure 2 for Optimal Multiple Surface Segmentation with Convex Priors in Irregularly Sampled Space
Figure 3 for Optimal Multiple Surface Segmentation with Convex Priors in Irregularly Sampled Space
Figure 4 for Optimal Multiple Surface Segmentation with Convex Priors in Irregularly Sampled Space
Viaarxiv icon

Thickness Mapping of Eleven Retinal Layers in Normal Eyes Using Spectral Domain Optical Coherence Tomography

Add code
Bookmark button
Alert button
Dec 11, 2013
Raheleh Kafieh, Hossein Rabbani, Fedra Hajizadeh, Michael D. Abramoff, Milan Sonka

Figure 1 for Thickness Mapping of Eleven Retinal Layers in Normal Eyes Using Spectral Domain Optical Coherence Tomography
Figure 2 for Thickness Mapping of Eleven Retinal Layers in Normal Eyes Using Spectral Domain Optical Coherence Tomography
Figure 3 for Thickness Mapping of Eleven Retinal Layers in Normal Eyes Using Spectral Domain Optical Coherence Tomography
Figure 4 for Thickness Mapping of Eleven Retinal Layers in Normal Eyes Using Spectral Domain Optical Coherence Tomography
Viaarxiv icon

Intra-Retinal Layer Segmentation of 3D Optical Coherence Tomography Using Coarse Grained Diffusion Map

Add code
Bookmark button
Alert button
Oct 08, 2012
Raheleh Kafieh, Hossein Rabbani, Michael D. Abramoff, Milan Sonka

Figure 1 for Intra-Retinal Layer Segmentation of 3D Optical Coherence Tomography Using Coarse Grained Diffusion Map
Figure 2 for Intra-Retinal Layer Segmentation of 3D Optical Coherence Tomography Using Coarse Grained Diffusion Map
Figure 3 for Intra-Retinal Layer Segmentation of 3D Optical Coherence Tomography Using Coarse Grained Diffusion Map
Figure 4 for Intra-Retinal Layer Segmentation of 3D Optical Coherence Tomography Using Coarse Grained Diffusion Map
Viaarxiv icon