Abstract:Estimating rate constants from complex chemical reactions is essential for advancing detailed chemistry. However, the stiffness inherent in real-world atmospheric chemistry systems poses severe challenges, leading to training instability and poor convergence that hinder effective rate constant estimation using learning-based approaches. To address this, we propose a Stiff Physics-Informed Neural ODE framework (SPIN-ODE) for chemical reaction modelling. Our method introduces a three-stage optimisation process: first, a latent neural ODE learns the continuous and differentiable trajectory between chemical concentrations and their time derivatives; second, an explicit Chemical Reaction Neural Network (CRNN) extracts the underlying rate coefficients based on the learned dynamics; and third, fine-tune CRNN using a neural ODE solver to further improve rate coefficient estimation. Extensive experiments on both synthetic and newly proposed real-world datasets validate the effectiveness and robustness of our approach. As the first work on stiff Neural ODEs for chemical rate coefficient discovery, our study opens promising directions for integrating neural networks with detailed chemistry.
Abstract:Air quality prediction is key to mitigating health impacts and guiding decisions, yet existing models tend to focus on temporal trends while overlooking spatial generalization. We propose AQ-Net, a spatiotemporal reanalysis model for both observed and unobserved stations in the near future. AQ-Net utilizes the LSTM and multi-head attention for the temporal regression. We also propose a cyclic encoding technique to ensure continuous time representation. To learn fine-grained spatial air quality estimation, we incorporate AQ-Net with the neural kNN to explore feature-based interpolation, such that we can fill the spatial gaps given coarse observation stations. To demonstrate the efficiency of our model for spatiotemporal reanalysis, we use data from 2013-2017 collected in northern China for PM2.5 analysis. Extensive experiments show that AQ-Net excels in air quality reanalysis, highlighting the potential of hybrid spatio-temporal models to better capture environmental dynamics, especially in urban areas where both spatial and temporal variability are critical.
Abstract:Modeling atmospheric chemistry is complex and computationally intense. Given the recent success of Deep neural networks in digital signal processing, we propose a Neural Network Emulator for fast chemical concentration modeling. We consider atmospheric chemistry as a time-dependent Ordinary Differential Equation. To extract the hidden correlations between initial states and future time evolution, we propose ChemNNE, an Attention based Neural Network Emulator (NNE) that can model the atmospheric chemistry as a neural ODE process. To efficiently simulate the chemical changes, we propose the sinusoidal time embedding to estimate the oscillating tendency over time. More importantly, we use the Fourier neural operator to model the ODE process for efficient computation. We also propose three physical-informed losses to supervise the training optimization. To evaluate our model, we propose a large-scale chemical dataset that can be used for neural network training and evaluation. The extensive experiments show that our approach achieves state-of-the-art performance in modeling accuracy and computational speed.