Abstract:Real-time (RT) dynamic MRI plays a vital role in capturing rapid physiological processes, offering unique insights into organ motion and function. Among these applications, RT cine MRI is particularly important for functional assessment of the heart with high temporal resolution. RT imaging enables free-breathing, ungated imaging of cardiac motion, making it a crucial alternative for patients who cannot tolerate conventional breath-hold, ECG-gated acquisitions. However, achieving high acceleration rates in RT cine MRI is challenging due to aliasing artifacts from extra-cardiac tissues, particularly at high undersampling factors. In this study, we propose a novel outer volume removal (OVR) method to address this challenge by eliminating aliasing contributions from non-cardiac regions in a post-processing framework. Our approach estimates the outer volume signal for each timeframe using composite temporal images from time-interleaved undersampling patterns, which inherently contain pseudo-periodic ghosting artifacts. A deep learning (DL) model is trained to identify and remove these artifacts, producing a clean outer volume estimate that is subsequently subtracted from the corresponding k-space data. The final reconstruction is performed with a physics-driven DL (PD-DL) method trained using an OVR-specific loss function to restore high spatio-temporal resolution images. Experimental results show that the proposed method at high accelerations achieves image quality that is visually comparable to clinical baseline images, while outperforming conventional reconstruction techniques, both qualitatively and quantitatively. The proposed approach provides a practical and effective solution for artifact reduction in RT cine MRI without requiring acquisition modifications, offering a pathway to higher acceleration rates while preserving diagnostic quality.
Abstract:Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Even though PD-DL offers higher acceleration rates compared to existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. One impediment for their deployment is the difficulties with generalization to pathologies or population groups that are not well-represented in training sets. This has been noted in several studies, and fine-tuning on target populations to improve reconstruction has been suggested. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and underserved areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training, using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates the goodness of the output with a compressibility-based approach, while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show that CUPID achieves similar quality compared to well-established PD-DL training strategies that require raw k-space data access, while outperforming conventional compressed sensing (CS) and state-of-the-art generative methods. We also demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden.