Abstract:Recent interpretability work on large language models (LLMs) has been increasingly dominated by a feature-discovery approach with the help of proxy modules. Then, the quality of features learned by, e.g., sparse auto-encoders (SAEs), is evaluated. This paradigm naturally raises a critical question: do such learned features have better properties than those already represented within the original model parameters, and unfortunately, only a few studies have made such comparisons systematically so far. In this work, we revisit the interpretability of feature vectors stored in feed-forward (FF) layers, given the perspective of FF as key-value memories, with modern interpretability benchmarks. Our extensive evaluation revealed that SAE and FFs exhibits a similar range of interpretability, although SAEs displayed an observable but minimal improvement in some aspects. Furthermore, in certain aspects, surprisingly, even vanilla FFs yielded better interpretability than the SAEs, and features discovered in SAEs and FFs diverged. These bring questions about the advantage of SAEs from both perspectives of feature quality and faithfulness, compared to directly interpreting FF feature vectors, and FF key-value parameters serve as a strong baseline in modern interpretability research.




Abstract:Elucidating the rationale behind neural models' outputs has been challenging in the machine learning field, which is indeed applicable in this age of large language models (LLMs) and in-context learning (ICL). When it comes to estimating input attributions (IA), ICL poses a new issue of interpreting which example in the prompt, consisting of a set of examples, contributed to identifying the task/rule to be solved. To this end, in this paper, we introduce synthetic diagnostic tasks inspired by the poverty of the stimulus design in inductive reasoning; here, most in-context examples are ambiguous w.r.t. their underlying rule, and one critical example disambiguates the task demonstrated. The question is whether conventional IA methods can identify such an example in interpreting the inductive reasoning process in ICL. Our experiments provide several practical findings; for example, a certain simple IA method works the best, and the larger the model, the generally harder it is to interpret the ICL with gradient-based IA methods.




Abstract:Large language models (LLMs) take advantage of step-by-step reasoning instructions, e.g., chain-of-thought (CoT) prompting. Building on this, their ability to perform CoT-style reasoning robustly is of interest from a probing perspective. In this study, we inspect the step-by-step reasoning ability of LLMs with a focus on negation, which is a core linguistic phenomenon that is difficult to process. In particular, we introduce several controlled settings (e.g., reasoning in case of fictional entities) to evaluate the logical reasoning abilities of the models. We observed that dozens of modern LLMs were not robust against lexical negation (e.g., plausible ->implausible) when performing CoT-style reasoning, and the results highlight unique limitations in each LLM family.