Abstract:Graphs are an essential part of many machine learning problems such as analysis of parse trees, social networks, knowledge graphs, transportation systems, and molecular structures. Applying machine learning in these areas typically involves learning the graph structure and the relationship between the nodes of the graph. However, learning the graph structure is often complex, particularly when the graph is cyclic, and the transitions from one node to another are conditioned such as graphs used to represent a finite state machine. To solve this problem, we propose to extend the memory based Neural Turing Machine (NTM) with two novel additions. We allow for transitions between nodes to be influenced by information received from external environments, and we let the NTM learn the context of those transitions. We refer to this extension as the Conditional Neural Turing Machine (CNTM). We show that the CNTM can infer conditional transition graphs by empirically verifiying the model on two data sets: a large set of randomly generated graphs, and a graph modeling the information retrieval process during certain crisis situations. The results show that the CNTM is able to reproduce the paths inside the graph with accuracy ranging from 82,12% for 10 nodes graphs to 65,25% for 100 nodes graphs.
Abstract:Measuring similarities between strings is central for many established and fast growing research areas including information retrieval, biology, and natural language processing. The traditional approach for string similarity measurements is to define a metric over a word space that quantifies and sums up the differences between characters in two strings. The state-of-the-art in the area has, surprisingly, not evolved much during the last few decades. The majority of the metrics are based on a simple comparison between character and character distributions without consideration for the context of the words. This paper proposes a string metric that encompasses similarities between strings based on (1) the character similarities between the words including. Non-Standard and standard spellings of the same words, and (2) the context of the words. Our proposal is a neural network composed of a denoising autoencoder and what we call a context encoder specifically designed to find similarities between the words based on their context. The experimental results show that the resulting metrics succeeds in 85.4\% of the cases in finding the correct version of a non-standard spelling among the closest words, compared to 63.2\% with the established Normalised-Levenshtein distance. Besides, we show that words used in similar context are with our approach calculated to be similar than words with different contexts, which is a desirable property missing in established string metrics.