Abstract:Pigmented skin lesions represent localized areas of increased melanin and can indicate serious conditions like melanoma, a major contributor to skin cancer mortality. The MedMNIST v2 dataset, inspired by MNIST, was recently introduced to advance research in biomedical imaging and includes DermaMNIST, a dataset for classifying pigmented lesions based on the HAM10000 dataset. This study assesses ResNet-50 and EfficientNetV2L models for multi-class classification using DermaMNIST, employing transfer learning and various layer configurations. One configuration achieves results that match or surpass existing methods. This study suggests that convolutional neural networks (CNNs) can drive progress in biomedical image analysis, significantly enhancing diagnostic accuracy.
Abstract:Deep learning has significantly advanced the field of medical image classification, particularly with the adoption of Convolutional Neural Networks (CNNs). Various deep learning frameworks such as Keras, PyTorch and JAX offer unique advantages in model development and deployment. However, their comparative performance in medical imaging tasks remains underexplored. This study presents a comprehensive analysis of CNN implementations across these frameworks, using the PathMNIST dataset as a benchmark. We evaluate training efficiency, classification accuracy and inference speed to assess their suitability for real-world applications. Our findings highlight the trade-offs between computational speed and model accuracy, offering valuable insights for researchers and practitioners in medical image analysis.