Abstract:Computed tomography perfusion (CTP) at admission is routinely used to estimate the ischemic core and penumbra, while follow-up diffusion-weighted MRI (DWI) provides the definitive infarct outcome. However, single time-point segmentations fail to capture the biological heterogeneity and temporal evolution of stroke. We propose a bi-temporal analysis framework that characterizes ischemic tissue using statistical descriptors, radiomic texture features, and deep feature embeddings from two architectures (mJ-Net and nnU-Net). Bi-temporal refers to admission (T1) and post-treatment follow-up (T2). All features are extracted at T1 from CTP, with follow-up DWI aligned to ensure spatial correspondence. Manually delineated masks at T1 and T2 are intersected to construct six regions of interest (ROIs) encoding both initial tissue state and final outcome. Features were aggregated per region and analyzed in feature space. Evaluation on 18 patients with successful reperfusion demonstrated meaningful clustering of region-level representations. Regions classified as penumbra or healthy at T1 that ultimately recovered exhibited feature similarity to preserved brain tissue, whereas infarct-bound regions formed distinct groupings. Both baseline GLCM and deep embeddings showed a similar trend: penumbra regions exhibit features that are significantly different depending on final state, whereas this difference is not significant for core regions. Deep feature spaces, particularly mJ-Net, showed strong separation between salvageable and non-salvageable tissue, with a penumbra separation index that differed significantly from zero (Wilcoxon signed-rank test). These findings suggest that encoder-derived feature manifolds reflect underlying tissue phenotypes and state transitions, providing insight into imaging-based quantification of stroke evolution.
Abstract:Depth information is essential in computer vision, particularly in underwater imaging, robotics, and autonomous navigation. However, conventional augmentation techniques overlook depth aware transformations, limiting model robustness in real world depth variations. In this paper, we introduce Depth-Jitter, a novel depth-based augmentation technique that simulates natural depth variations to improve generalization. Our approach applies adaptive depth offsetting, guided by depth variance thresholds, to generate synthetic depth perturbations while preserving structural integrity. We evaluate Depth-Jitter on two benchmark datasets, FathomNet and UTDAC2020 demonstrating its impact on model stability under diverse depth conditions. Extensive experiments compare Depth-Jitter against traditional augmentation strategies such as ColorJitter, analyzing performance across varying learning rates, encoders, and loss functions. While Depth-Jitter does not always outperform conventional methods in absolute performance, it consistently enhances model stability and generalization in depth-sensitive environments. These findings highlight the potential of depth-aware augmentation for real-world applications and provide a foundation for further research into depth-based learning strategies. The proposed technique is publicly available to support advancements in depth-aware augmentation. The code is publicly available on \href{https://github.com/mim-team/Depth-Jitter}{github}.