Abstract:LLM evaluation is challenging even the case of base models. In real world deployments, evaluation is further complicated by the interplay of task specific prompts and experiential context. At scale, bias evaluation is often based on short context, fixed choice benchmarks that can be rapidly evaluated, however, these can lose validity when the LLMs' deployed context differs. Large scale human evaluation is often seen as too intractable and costly. Here we present our journey towards developing a semi-automated bias evaluation framework for free text responses that has human insights at its core. We discuss how we developed an operational definition of bias that helped us automate our pipeline and a methodology for classifying bias beyond multiple choice. We additionally comment on how human evaluation helped us uncover problematic templates in a bias benchmark.
Abstract:Pre-trained large language models (LLMs) can now be easily adapted for specific business purposes using custom prompts or fine tuning. These customizations are often iteratively re-engineered to improve some aspect of performance, but after each change businesses want to ensure that there has been no negative impact on the system's behavior around such critical issues as bias. Prior methods of benchmarking bias use techniques such as word masking and multiple choice questions to assess bias at scale, but these do not capture all of the nuanced types of bias that can occur in free response answers, the types of answers typically generated by LLM systems. In this paper, we identify several kinds of nuanced bias in free text that cannot be similarly identified by multiple choice tests. We describe these as: confidence bias, implied bias, inclusion bias and erasure bias. We present a semi-automated pipeline for detecting these types of bias by first eliminating answers that can be automatically classified as unbiased and then co-evaluating name reversed pairs using crowd workers. We believe that the nuanced classifications our method generates can be used to give better feedback to LLMs, especially as LLM reasoning capabilities become more advanced.