Abstract:Detecting deception in an increasingly digital world is both a critical and challenging task. In this study, we present a comprehensive evaluation of the automated deception detection capabilities of Large Language Models (LLMs) and Large Multimodal Models (LMMs) across diverse domains. We assess the performance of both open-source and commercial LLMs on three distinct datasets: real life trial interviews (RLTD), instructed deception in interpersonal scenarios (MU3D), and deceptive reviews (OpSpam). We systematically analyze the effectiveness of different experimental setups for deception detection, including zero-shot and few-shot approaches with random or similarity-based in-context example selection. Our results show that fine-tuned LLMs achieve state-of-the-art performance on textual deception detection tasks, while LMMs struggle to fully leverage cross-modal cues. Additionally, we analyze the impact of auxiliary features, such as non-verbal gestures and video summaries, and examine the effectiveness of different prompting strategies, including direct label generation and chain-of-thought reasoning. Our findings provide key insights into how LLMs process and interpret deceptive cues across modalities, highlighting their potential and limitations in real-world deception detection applications.
Abstract:Detecting dialogue breakdown in real time is critical for conversational AI systems, because it enables taking corrective action to successfully complete a task. In spoken dialog systems, this breakdown can be caused by a variety of unexpected situations including high levels of background noise, causing STT mistranscriptions, or unexpected user flows. In particular, industry settings like healthcare, require high precision and high flexibility to navigate differently based on the conversation history and dialogue states. This makes it both more challenging and more critical to accurately detect dialog breakdown. To accurately detect breakdown, we found it requires processing audio inputs along with downstream NLP model inferences on transcribed text in real time. In this paper, we introduce a Multimodal Contextual Dialogue Breakdown (MultConDB) model. This model significantly outperforms other known best models by achieving an F1 of 69.27.
Abstract:Most previous research on moral frames has focused on social media short texts, little work has explored moral sentiment within news articles. In news articles, authors often express their opinions or political stance through moral judgment towards events, specifically whether the event is right or wrong according to social moral rules. This paper initiates a new task to understand moral opinions towards events in news articles. We have created a new dataset, EMONA, and annotated event-level moral opinions in news articles. This dataset consists of 400 news articles containing over 10k sentences and 45k events, among which 9,613 events received moral foundation labels. Extracting event morality is a challenging task, as moral judgment towards events can be very implicit. Baseline models were built for event moral identification and classification. In addition, we also conduct extrinsic evaluations to integrate event-level moral opinions into three downstream tasks. The statistical analysis and experiments show that moral opinions of events can serve as informative features for identifying ideological bias or subjective events.