Abstract:The Internet of Drones (IoD), where drones collaborate in data collection and analysis, has become essential for applications such as surveillance and environmental monitoring. Federated learning (FL) enables drones to train machine learning models in a decentralized manner while preserving data privacy. However, FL in IoD networks is susceptible to attacks like data poisoning and model inversion. Federated unlearning (FU) mitigates these risks by eliminating adversarial data contributions, preventing their influence on the model. This paper proposes sky of unlearning (SoUL), a federated unlearning framework that efficiently removes the influence of unlearned data while maintaining model performance. A selective pruning algorithm is designed to identify and remove neurons influential in unlearning but minimally impact the overall performance of the model. Simulations demonstrate that SoUL outperforms existing unlearning methods, achieves accuracy comparable to full retraining, and reduces computation and communication overhead, making it a scalable and efficient solution for resource-constrained IoD networks.
Abstract:Data scarcity in medical imaging poses significant challenges due to privacy concerns. Diffusion models, a recent generative modeling technique, offer a potential solution by generating synthetic and realistic data. However, questions remain about the performance of convolutional neural network (CNN) models on original and synthetic datasets. If diffusion-generated samples can help CNN models perform comparably to those trained on original datasets, reliance on patient-specific data for training CNNs might be reduced. In this study, we investigated the effectiveness of diffusion models for generating synthetic medical images to train CNNs in three domains: Brain Tumor MRI, Acute Lymphoblastic Leukemia (ALL), and SARS-CoV-2 CT scans. A diffusion model was trained to generate synthetic datasets for each domain. Pre-trained CNN architectures were then trained on these synthetic datasets and evaluated on unseen real data. All three datasets achieved promising classification performance using CNNs trained on synthetic data. Local Interpretable Model-Agnostic Explanations (LIME) analysis revealed that the models focused on relevant image features for classification. This study demonstrates the potential of diffusion models to generate synthetic medical images for training CNNs in medical image analysis.