Abstract:This paper introduces a Machine Learning-Driven website Platform and Browser Extension designed to quickly enhance online security by providing real-time risk scoring and fraud detection for website legitimacy verification and consumer protection. The platform works seamlessly in the background to analyze website behavior, network traffic, and user interactions, offering immediate feedback and alerts when potential threats are detected. By integrating this system into a user-friendly browser extension, the platform empowers individuals to navigate the web safely, reducing the risk of engaging with fraudulent websites. Its real-time functionality is crucial in e-commerce and everyday browsing, where quick, actionable insights can prevent financial losses, identity theft, and exposure to malicious sites. This paper explores how this solution offers a practical, fast-acting tool for enhancing online consumer protection, underscoring its potential to play a critical role in safeguarding users and maintaining trust in digital transactions. The platform's focus on speed and efficiency makes it an essential asset for preventing fraud in today's increasingly digital world.
Abstract:As online fraud becomes more sophisticated and pervasive, traditional fraud detection methods are struggling to keep pace with the evolving tactics employed by fraudsters. This paper explores the transformative role of machine learning in addressing these challenges by offering more advanced, scalable, and adaptable solutions for fraud detection and prevention. By analyzing key models such as Random Forest, Neural Networks, and Gradient Boosting, this paper highlights the strengths of machine learning in processing vast datasets, identifying intricate fraud patterns, and providing real-time predictions that enable a proactive approach to fraud prevention. Unlike rule-based systems that react after fraud has occurred, machine learning models continuously learn from new data, adapting to emerging fraud schemes and reducing false positives, which ultimately minimizes financial losses. This research emphasizes the potential of machine learning to revolutionize fraud detection frameworks by making them more dynamic, efficient, and capable of handling the growing complexity of fraud across various industries. Future developments in machine learning, including deep learning and hybrid models, are expected to further enhance the predictive accuracy and applicability of these systems, ensuring that organizations remain resilient in the face of new and emerging fraud tactics.