Abstract:Large Vision Language Models (LVLMs) demonstrate strong capabilities in multimodal reasoning and many real-world applications, such as visual question answering. However, LVLMs are highly vulnerable to jailbreaking attacks. This paper systematically analyzes the vulnerabilities of LVLMs integrated in Intelligent Transportation Systems (ITS) under carefully crafted jailbreaking attacks. First, we carefully construct a dataset with harmful queries relevant to transportation, following OpenAI's prohibited categories to which the LVLMs should not respond. Second, we introduce a novel jailbreaking attack that exploits the vulnerabilities of LVLMs through image typography manipulation and multi-turn prompting. Third, we propose a multi-layered response filtering defense technique to prevent the model from generating inappropriate responses. We perform extensive experiments with the proposed attack and defense on the state-of-the-art LVLMs (both open-source and closed-source). To evaluate the attack method and defense technique, we use GPT-4's judgment to determine the toxicity score of the generated responses, as well as manual verification. Further, we compare our proposed jailbreaking method with existing jailbreaking techniques and highlight severe security risks involved with jailbreaking attacks with image typography manipulation and multi-turn prompting in the LVLMs integrated in ITS.
Abstract:Language models (LMs) are machine learning models designed to predict linguistic patterns by estimating the probability of word sequences based on large-scale datasets, such as text. LMs have a wide range of applications in natural language processing (NLP) tasks, including autocomplete and machine translation. Although larger datasets typically enhance LM performance, scalability remains a challenge due to constraints in computational power and resources. Distributed computing strategies offer essential solutions for improving scalability and managing the growing computational demand. Further, the use of sensitive datasets in training and deployment raises significant privacy concerns. Recent research has focused on developing decentralized techniques to enable distributed training and inference while utilizing diverse computational resources and enabling edge AI. This paper presents a survey on distributed solutions for various LMs, including large language models (LLMs), vision language models (VLMs), multimodal LLMs (MLLMs), and small language models (SLMs). While LLMs focus on processing and generating text, MLLMs are designed to handle multiple modalities of data (e.g., text, images, and audio) and to integrate them for broader applications. To this end, this paper reviews key advancements across the MLLM pipeline, including distributed training, inference, fine-tuning, and deployment, while also identifying the contributions, limitations, and future areas of improvement. Further, it categorizes the literature based on six primary focus areas of decentralization. Our analysis describes gaps in current methodologies for enabling distributed solutions for LMs and outline future research directions, emphasizing the need for novel solutions to enhance the robustness and applicability of distributed LMs.
Abstract:Federated Learning has emerged as a leading approach for decentralized machine learning, enabling multiple clients to collaboratively train a shared model without exchanging private data. While FL enhances data privacy, it remains vulnerable to inference attacks, such as gradient inversion and membership inference, during both training and inference phases. Homomorphic Encryption provides a promising solution by encrypting model updates to protect against such attacks, but it introduces substantial communication overhead, slowing down training and increasing computational costs. To address these challenges, we propose QuanCrypt-FL, a novel algorithm that combines low-bit quantization and pruning techniques to enhance protection against attacks while significantly reducing computational costs during training. Further, we propose and implement mean-based clipping to mitigate quantization overflow or errors. By integrating these methods, QuanCrypt-FL creates a communication-efficient FL framework that ensures privacy protection with minimal impact on model accuracy, thereby improving both computational efficiency and attack resilience. We validate our approach on MNIST, CIFAR-10, and CIFAR-100 datasets, demonstrating superior performance compared to state-of-the-art methods. QuanCrypt-FL consistently outperforms existing method and matches Vanilla-FL in terms of accuracy across varying client. Further, QuanCrypt-FL achieves up to 9x faster encryption, 16x faster decryption, and 1.5x faster inference compared to BatchCrypt, with training time reduced by up to 3x.