Abstract:Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
Abstract:Millions of people are infected by the coronavirus disease 2019 (COVID19) around the world. Machine Learning (ML) techniques are being used for COVID19 detection research from the beginning of the epidemic. This article represents the detailed information on frequently used datasets in COVID19 detection using Machine Learning (ML). We investigated 96 papers on COVID19 detection between January 2020 and June 2020. We extracted the information about used datasets from the articles and represented them here simultaneously. This investigation will help future researchers to find the COVID19 datasets without difficulty.