Abstract:The integration of autonomous unmanned aerial vehicles (UAVs) into large-scale artistic projects has emerged as a new application in robotics. This paper presents the design, deployment, and testing of a novel multi-drone system for automated mural painting in outdoor settings. This technology makes use of new software that coordinates multiple drones simultaneously, utilizing state-machine algorithms for task execution. Key advancements are the complex positioning system that combines 2D localization using a single motion tracking camera with onboard LiDAR for precise positioning, and a novel flight control algorithm, which works differently along the trajectory and normally to it, ensuring smoothness and high precision of the drawings at the same time. A 100 square meters mural was created using the developed multi-drone system, validating the system's efficacy. Compared to single-drone approaches, our multi-UAV solution significantly improves scalability and operational speed while maintaining high stability even in harsh weather conditions. The findings highlight the potential of autonomous robotic swarms in creative applications, paving the way for further advancements in large-scale robotic art.
Abstract:This paper presents the innovative design and successful deployment of a pioneering autonomous unmanned aerial system developed for executing the world's largest mural painted by a drone. Addressing the dual challenges of maintaining artistic precision and operational reliability under adverse outdoor conditions such as wind and direct sunlight, our work introduces a robust system capable of navigating and painting outdoors with unprecedented accuracy. Key to our approach is a novel navigation system that combines an infrared (IR) motion capture camera and LiDAR technology, enabling precise location tracking tailored specifically for largescale artistic applications. We employ a unique control architecture that uses different regulation in tangential and normal directions relative to the planned path, enabling precise trajectory tracking and stable line rendering. We also present algorithms for trajectory planning and path optimization, allowing for complex curve drawing and area filling. The system includes a custom-designed paint spraying mechanism, specifically engineered to function effectively amidst the turbulent airflow generated by the drone's propellers, which also protects the drone's critical components from paint-related damage, ensuring longevity and consistent performance. Experimental results demonstrate the system's robustness and precision in varied conditions, showcasing its potential for autonomous large-scale art creation and expanding the functional applications of robotics in creative fields.