Abstract:Probabilistic relational models such as parametric factor graphs enable efficient (lifted) inference by exploiting the indistinguishability of objects. In lifted inference, a representative of indistinguishable objects is used for computations. To obtain a relational (i.e., lifted) representation, the Advanced Colour Passing (ACP) algorithm is the state of the art. The ACP algorithm, however, requires underlying distributions, encoded as potential-based factorisations, to exactly match to identify and exploit indistinguishabilities. Hence, ACP is unsuitable for practical applications where potentials learned from data inevitably deviate even if associated objects are indistinguishable. To mitigate this problem, we introduce the $\varepsilon$-Advanced Colour Passing ($\varepsilon$-ACP) algorithm, which allows for a deviation of potentials depending on a hyperparameter $\varepsilon$. $\varepsilon$-ACP efficiently uncovers and exploits indistinguishabilities that are not exact. We prove that the approximation error induced by $\varepsilon$-ACP is strictly bounded and our experiments show that the approximation error is close to zero in practice.
Abstract:Probabilistic relational models provide a well-established formalism to combine first-order logic and probabilistic models, thereby allowing to represent relationships between objects in a relational domain. At the same time, the field of artificial intelligence requires increasingly large amounts of relational training data for various machine learning tasks. Collecting real-world data, however, is often challenging due to privacy concerns, data protection regulations, high costs, and so on. To mitigate these challenges, the generation of synthetic data is a promising approach. In this paper, we solve the problem of generating synthetic relational data via probabilistic relational models. In particular, we propose a fully-fledged pipeline to go from relational database to probabilistic relational model, which can then be used to sample new synthetic relational data points from its underlying probability distribution. As part of our proposed pipeline, we introduce a learning algorithm to construct a probabilistic relational model from a given relational database.
Abstract:Lifted inference exploits symmetries in probabilistic graphical models by using a representative for indistinguishable objects, thereby speeding up query answering while maintaining exact answers. Even though lifting is a well-established technique for the task of probabilistic inference in relational domains, it has not yet been applied to the task of causal inference. In this paper, we show how lifting can be applied to efficiently compute causal effects in relational domains. More specifically, we introduce parametric causal factor graphs as an extension of parametric factor graphs incorporating causal knowledge and give a formal semantics of interventions therein. We further present the lifted causal inference algorithm to compute causal effects on a lifted level, thereby drastically speeding up causal inference compared to propositional inference, e.g., in causal Bayesian networks. In our empirical evaluation, we demonstrate the effectiveness of our approach.