Abstract:Spin coating polymer thin films to achieve specific mechanical properties is inherently a multi-objective optimization problem. We present a framework that integrates an active Pareto front learning algorithm (PyePAL) with visualization and explainable AI techniques to optimize processing parameters. PyePAL uses Gaussian process models to predict objective values (hardness and elasticity) from the design variables (spin speed, dilution, and polymer mixture), guiding the adaptive selection of samples toward promising regions of the design space. To enable interpretable insights into the high-dimensional design space, we utilize UMAP (Uniform Manifold Approximation and Projection) for two-dimensional visualization of the Pareto front exploration. Additionally, we incorporate fuzzy linguistic summaries, which translate the learned relationships between process parameters and performance objectives into linguistic statements, thus enhancing the explainability and understanding of the optimization results. Experimental results demonstrate that our method efficiently identifies promising polymer designs, while the visual and linguistic explanations facilitate expert-driven analysis and knowledge discovery.