Abstract:Every maneuver of a vehicle redistributes risks between road users. While human drivers do this intuitively, autonomous vehicles allow and require deliberative algorithmic risk management. But how should traffic risks be distributed among road users? In a global experimental study in eight countries with different cultural backgrounds and almost 11,000 participants, we compared risk distribution preferences. It turns out that risk preferences in road traffic are strikingly similar between the cultural zones. The vast majority of participants in all countries deviates from a guiding principle of minimizing accident probabilities in favor of weighing up the probability and severity of accidents. At the national level, the consideration of accident probability and severity hardly differs between countries. The social dilemma of autonomous vehicles detected in deterministic crash scenarios disappears in risk assessments of everyday traffic situations in all countries. In no country do cyclists receive a risk bonus that goes beyond their higher vulnerability. In sum, our results suggest that a global consensus on the risk ethics of autonomous driving is easier to establish than on the ethics of crashing.
Abstract:ChatGPT is not only fun to chat with, but it also searches information, answers questions, and gives advice. With consistent moral advice, it might improve the moral judgment and decisions of users, who often hold contradictory moral beliefs. Unfortunately, ChatGPT turns out highly inconsistent as a moral advisor. Nonetheless, it influences users' moral judgment, we find in an experiment, even if they know they are advised by a chatting bot, and they underestimate how much they are influenced. Thus, ChatGPT threatens to corrupt rather than improves users' judgment. These findings raise the question of how to ensure the responsible use of ChatGPT and similar AI. Transparency is often touted but seems ineffective. We propose training to improve digital literacy.