Abstract:This paper is about the recent notion of computably probably approximately correct learning, which lies between the statistical learning theory where there is no computational requirement on the learner and efficient PAC where the learner must be polynomially bounded. Examples have recently been given of hypothesis classes which are PAC learnable but not computably PAC learnable, but these hypothesis classes are unnatural or non-canonical in the sense that they depend on a numbering of proofs, formulas, or programs. We use the on-a-cone machinery from computability theory to prove that, under mild assumptions such as that the hypothesis class can be computably listable, any natural hypothesis class which is learnable must be computably learnable. Thus the counterexamples given previously are necessarily unnatural.
Abstract:Qualitative and quantitative approaches to reasoning about uncertainty can lead to different logical systems for formalizing such reasoning, even when the language for expressing uncertainty is the same. In the case of reasoning about relative likelihood, with statements of the form $\varphi\succsim\psi$ expressing that $\varphi$ is at least as likely as $\psi$, a standard qualitative approach using preordered preferential structures yields a dramatically different logical system than a quantitative approach using probability measures. In fact, the standard preferential approach validates principles of reasoning that are incorrect from a probabilistic point of view. However, in this paper we show that a natural modification of the preferential approach yields exactly the same logical system as a probabilistic approach--not using single probability measures, but rather sets of probability measures. Thus, the same preferential structures used in the study of non-monotonic logics and belief revision may be used in the study of comparative probabilistic reasoning based on imprecise probabilities.