Abstract:In classification problems, models must predict a class label based on the input data features. However, class labels are organized hierarchically in many datasets. While a classification task is often defined at a specific level of this hierarchy, training can utilize a finer granularity of labels. Empirical evidence suggests that such fine-grained training can enhance performance. In this work, we investigate the generality of this observation and explore its underlying causes using both real and synthetic datasets. We show that training on fine-grained labels does not universally improve classification accuracy. Instead, the effectiveness of this strategy depends critically on the geometric structure of the data and its relations with the label hierarchy. Additionally, factors such as dataset size and model capacity significantly influence whether fine-grained labels provide a performance benefit.
Abstract:To achieve near-zero training error in a classification problem, the layers of a deep network have to disentangle the manifolds of data points with different labels, to facilitate the discrimination. However, excessive class separation can bring to overfitting since good generalisation requires learning invariant features, which involve some level of entanglement. We report on numerical experiments showing how the optimisation dynamics finds representations that balance these opposing tendencies with a non-monotonic trend. After a fast segregation phase, a slower rearrangement (conserved across data sets and architectures) increases the class entanglement. The training error at the inversion is remarkably stable under subsampling, and across network initialisations and optimisers, which characterises it as a property solely of the data structure and (very weakly) of the architecture. The inversion is the manifestation of tradeoffs elicited by well-defined and maximally stable elements of the training set, coined "stragglers", particularly influential for generalisation.