Abstract:We evaluate the efficacy of predicted UPOS tags as input features for dependency parsers in lower resource settings to evaluate how treebank size affects the impact tagging accuracy has on parsing performance. We do this for real low resource universal dependency treebanks, artificially low resource data with varying treebank sizes, and for very small treebanks with varying amounts of augmented data. We find that predicted UPOS tags are somewhat helpful for low resource treebanks, especially when fewer fully-annotated trees are available. We also find that this positive impact diminishes as the amount of data increases.
Abstract:We present the system submission from the FASTPARSE team for the EUD Shared Task at IWPT 2020. We engaged with the task by focusing on efficiency. For this we considered training costs and inference efficiency. Our models are a combination of distilled neural dependency parsers and a rule-based system that projects UD trees into EUD graphs. We obtained an average ELAS of 74.04 for our official submission, ranking 4th overall.