Abstract:Artificial intelligence (AI) -- and specifically machine learning (ML) -- applications for climate prediction across timescales are proliferating quickly. The emergence of these methods prompts a revisit to the impact of data preprocessing, a topic familiar to the climate community, as more traditional statistical models work with relatively small sample sizes. Indeed, the skill and confidence in the forecasts produced by data-driven models are directly influenced by the quality of the datasets and how they are treated during model development, thus yielding the colloquialism "garbage in, garbage out." As such, this article establishes protocols for the proper preprocessing of input data for AI/ML models designed for climate prediction (i.e., subseasonal to decadal and longer). The three aims are to: (1) educate researchers, developers, and end users on the effects that preprocessing has on climate predictions; (2) provide recommended practices for data preprocessing for such applications; and (3) empower end users to decipher whether the models they are using are properly designed for their objectives. Specific topics covered in this article include the creation of (standardized) anomalies, dealing with non-stationarity and the spatiotemporally correlated nature of climate data, and handling of extreme values and variables with potentially complex distributions. Case studies will illustrate how using different preprocessing techniques can produce different predictions from the same model, which can create confusion and decrease confidence in the overall process. Ultimately, implementing the recommended practices set forth in this article will enhance the robustness and transparency of AI/ML in climate prediction studies.
Abstract:Extreme heat is the deadliest weather-related hazard in the United States. Furthermore, it is increasing in intensity, frequency, and duration, making skillful forecasts vital to protecting life and property. Traditional numerical weather prediction (NWP) models struggle with extreme heat for medium-range and subseasonal-to-seasonal (S2S) timescales. Meanwhile, artificial intelligence-based weather prediction (AIWP) models are progressing rapidly. However, it is largely unknown how well AIWP models forecast extremes, especially for medium-range and S2S timescales. This study investigates 2-m temperature forecasts for 60 heat waves across the four boreal seasons and over four CONUS regions at lead times up to 20 days, using two AIWP models (Google GraphCast and Pangu-Weather) and one traditional NWP model (NOAA United Forecast System Global Ensemble Forecast System (UFS GEFS)). First, case study analyses show that both AIWP models and the UFS GEFS exhibit consistent cold biases on regional scales in the 5-10 days of lead time before heat wave onset. GraphCast is the more skillful AIWP model, outperforming UFS GEFS and Pangu-Weather in most locations. Next, the two AIWP models are isolated and analyzed across all heat waves and seasons, with events split among the model's testing (2018-2023) and training (1979-2017) periods. There are cold biases before and during the heat waves in both models and all seasons, except Pangu-Weather in winter, which exhibits a mean warm bias before heat wave onset. Overall, results offer encouragement that AIWP models may be useful for medium-range and S2S predictability of extreme heat.