
Abstract:We investigate a class of hierarchical mixtures-of-experts (HME) models where exponential family regression models with generalized linear mean functions of the form psi(ga+fx^Tfgb) are mixed. Here psi(...) is the inverse link function. Suppose the true response y follows an exponential family regression model with mean function belonging to a class of smooth functions of the form psi(h(fx)) where h(...)in W_2^infty (a Sobolev class over [0,1]^{s}). It is shown that the HME probability density functions can approximate the true density, at a rate of O(m^{-2/s}) in L_p norm, and at a rate of O(m^{-4/s}) in Kullback-Leibler divergence. These rates can be achieved within the family of HME structures with no more than s-layers, where s is the dimension of the predictor fx. It is also shown that likelihood-based inference based on HME is consistent in recovering the truth, in the sense that as the sample size n and the number of experts m both increase, the mean square error of the predicted mean response goes to zero. Conditions for such results to hold are stated and discussed.
Abstract:In the popular approach of "Bayesian variable selection" (BVS), one uses prior and posterior distributions to select a subset of candidate variables to enter the model. A completely new direction will be considered here to study BVS with a Gibbs posterior originating in statistical mechanics. The Gibbs posterior is constructed from a risk function of practical interest (such as the classification error) and aims at minimizing a risk function without modeling the data probabilistically. This can improve the performance over the usual Bayesian approach, which depends on a probability model which may be misspecified. Conditions will be provided to achieve good risk performance, even in the presence of high dimensionality, when the number of candidate variables "$K$" can be much larger than the sample size "$n$." In addition, we develop a convenient Markov chain Monte Carlo algorithm to implement BVS with the Gibbs posterior.