Abstract:Accurate real-time estimation of human movement dynamics, including internal joint moments and muscle forces, is essential for applications in clinical diagnostics and sports performance monitoring. Inertial measurement units (IMUs) provide a minimally intrusive solution for capturing motion data, particularly when used in sparse sensor configurations. However, current real-time methods rely on supervised learning, where a ground truth dataset needs to be measured with laboratory measurement systems, such as optical motion capture. These systems are known to introduce measurement and processing errors and often fail to generalize to real-world or previously unseen movements, necessitating new data collection efforts that are time-consuming and impractical. To overcome these limitations, we propose SSPINNpose, a self-supervised, physics-informed neural network that estimates joint kinematics and kinetics directly from IMU data, without requiring ground truth labels for training. We run the network output through a physics model of the human body to optimize physical plausibility and generate virtual measurement data. Using this virtual sensor data, the network is trained directly on the measured sensor data instead of a ground truth. When compared to optical motion capture, SSPINNpose is able to accurately estimate joint angles and joint moments at an RMSD of 8.7 deg and 4.9 BWBH%, respectively, for walking and running at speeds up to 4.9 m/s at a latency of 3.5 ms. Furthermore, the framework demonstrates robustness across sparse sensor configurations and can infer the anatomical locations of the sensors. These results underscore the potential of SSPINNpose as a scalable and adaptable solution for real-time biomechanical analysis in both laboratory and field environments.
Abstract:Objective: As metabolic cost is a primary factor influencing humans' gait, we want to deepen our understanding of metabolic energy expenditure models. Therefore, this paper identifies the parameters and input variables, such as muscle or joint states, that contribute to accurate metabolic cost estimations. Methods: We explored the parameters of four metabolic energy expenditure models in a Monte Carlo sensitivity analysis. Then, we analysed the model parameters by their calculated sensitivity indices, physiological context, and the resulting metabolic rates during the gait cycle. The parameter combination with the highest accuracy in the Monte Carlo simulations represented a quasi-optimized model. In the second step, we investigated the importance of input parameters and variables by analysing the accuracy of neural networks trained with different input features. Results: Power-related parameters were most influential in the sensitivity analysis and the neural network-based feature selection. We observed that the quasi-optimized models produced negative metabolic rates, contradicting muscle physiology. Neural network-based models showed promising abilities but have been unable to match the accuracy of traditional metabolic energy expenditure models. Conclusion: We showed that power-related metabolic energy expenditure model parameters and inputs are most influential during gait. Furthermore, our results suggest that neural network-based metabolic energy expenditure models are viable. However, bigger datasets are required to achieve better accuracy. Significance: As there is a need for more accurate metabolic energy expenditure models, we explored which musculoskeletal parameters are essential when developing a model to estimate metabolic energy.