Abstract:Natural-language-to-visualization (NL2VIS) systems based on large language models (LLMs) have substantially improved the accessibility of data visualization. However, their further adoption is hindered by two coupled challenges: (i) the absence of standardized evaluation metrics makes it difficult to assess progress in the field and compare different approaches; and (ii) natural language descriptions are inherently underspecified, so multiple visualizations may be valid for the same query. To address these issues, we introduce VegaChat, a framework for generating, validating, and assessing declarative visualizations from natural language. We propose two complementary metrics: Spec Score, a deterministic metric that measures specification-level similarity without invoking an LLM, and Vision Score, a library-agnostic, image-based metric that leverages a multimodal LLM to assess chart similarity and prompt compliance. We evaluate VegaChat on the NLV Corpus and on the annotated subset of ChartLLM. VegaChat achieves near-zero rates of invalid or empty visualizations, while Spec Score and Vision Score exhibit strong correlation with human judgments (Pearson 0.65 and 0.71, respectively), indicating that the proposed metrics support consistent, cross-library comparison. The code and evaluation artifacts are available at https://zenodo.org/records/17062309.




Abstract:The use of large language models (LLMs) is becoming increasingly widespread among software developers. However, privacy and computational requirements are problematic with commercial solutions and the use of LLMs. In this work, we focus on using LLMs with around 160 million parameters that are suitable for local execution and augmentation with retrieval from local projects. We train two models based on the transformer architecture, the generative model GPT-2 and the retrieval-adapted RETRO model, on open-source Python files, and empirically evaluate and compare them, confirming the benefits of vector embedding based retrieval. Further, we improve our models' performance with In-context retrieval-augmented generation, which retrieves code snippets based on the Jaccard similarity of tokens. We evaluate In-context retrieval-augmented generation on larger models and conclude that, despite its simplicity, the approach is more suitable than using the RETRO architecture. We highlight the key role of proper tokenization in achieving the full potential of LLMs in code completion.