Abstract:Point cloud completion is crucial for 3D computer vision tasks in autonomous driving, augmented reality, and robotics. However, obtaining clean and complete point clouds from real-world environments is challenging due to noise and occlusions. Consequently, most existing completion networks -- trained on synthetic data -- struggle with real-world degradations. In this work, we tackle the problem of completing and denoising highly corrupted partial point clouds affected by multiple simultaneous degradations. To benchmark robustness, we introduce the Corrupted Point Cloud Completion Dataset (CPCCD), which highlights the limitations of current methods under diverse corruptions. Building on these insights, we propose DWCNet (Denoising-While-Completing Network), a completion framework enhanced with a Noise Management Module (NMM) that leverages contrastive learning and self-attention to suppress noise and model structural relationships. DWCNet achieves state-of-the-art performance on both clean and corrupted, synthetic and real-world datasets. The dataset and code will be publicly available at https://github.com/keneniwt/DWCNET-Robust-Point-Cloud-Completion-against-Corruptions




Abstract:Text-based person re-identification (Re-ID) is a challenging topic in the field of complex multimodal analysis, its ultimate aim is to recognize specific pedestrians by scrutinizing attributes/natural language descriptions. Despite the wide range of applicable areas such as security surveillance, video retrieval, person tracking, and social media analytics, there is a notable absence of comprehensive reviews dedicated to summarizing the text-based person Re-ID from a technical perspective. To address this gap, we propose to introduce a taxonomy spanning Evaluation, Strategy, Architecture, and Optimization dimensions, providing a comprehensive survey of the text-based person Re-ID task. We start by laying the groundwork for text-based person Re-ID, elucidating fundamental concepts related to attribute/natural language-based identification. Then a thorough examination of existing benchmark datasets and metrics is presented. Subsequently, we further delve into prevalent feature extraction strategies employed in text-based person Re-ID research, followed by a concise summary of common network architectures within the domain. Prevalent loss functions utilized for model optimization and modality alignment in text-based person Re-ID are also scrutinized. To conclude, we offer a concise summary of our findings, pinpointing challenges in text-based person Re-ID. In response to these challenges, we outline potential avenues for future open-set text-based person Re-ID and present a baseline architecture for text-based pedestrian image generation-guided re-identification(TBPGR).