Abstract:Detecting semantic backdoors in classification models--where some classes can be activated by certain natural, but out-of-distribution inputs--is an important problem that has received relatively little attention. Semantic backdoors are significantly harder to detect than backdoors that are based on trigger patterns due to the lack of such clearly identifiable patterns. We tackle this problem under the assumption that the clean training dataset and the training recipe of the model are both known. These assumptions are motivated by a consumer protection scenario, in which the responsible authority performs mystery shopping to test a machine learning service provider. In this scenario, the authority uses the provider's resources and tools to train a model on a given dataset and tests whether the provider included a backdoor. In our proposed approach, the authority creates a reference model pool by training a small number of clean and poisoned models using trusted infrastructure, and calibrates a model distance threshold to identify clean models. We propose and experimentally analyze a number of approaches to compute model distances and we also test a scenario where the provider performs an adaptive attack to avoid detection. The most reliable method is based on requesting adversarial training from the provider. The model distance is best measured using a set of input samples generated by inverting the models in such a way as to maximize the distance from clean samples. With these settings, our method can often completely separate clean and poisoned models, and it proves to be superior to state-of-the-art backdoor detectors as well.
Abstract:Achieving robustness against adversarial input perturbation is an important and intriguing problem in machine learning. In the area of semantic image segmentation, a number of adversarial training approaches have been proposed as a defense against adversarial perturbation, but the methodology of evaluating the robustness of the models is still lacking, compared to image classification. Here, we demonstrate that, just like in image classification, it is important to evaluate the models over several different and hard attacks. We propose a set of gradient based iterative attacks and show that it is essential to perform a large number of iterations. We include attacks against the internal representations of the models as well. We apply two types of attacks: maximizing the error with a bounded perturbation, and minimizing the perturbation for a given level of error. Using this set of attacks, we show for the first time that a number of models in previous work that are claimed to be robust are in fact not robust at all. We then evaluate simple adversarial training algorithms that produce reasonably robust models even under our set of strong attacks. Our results indicate that a key design decision to achieve any robustness is to use only adversarial examples during training. However, this introduces a trade-off between robustness and accuracy.