Abstract:Neural control of grasping arises from nonlinear interactions across multiple brain rhythms, yet EEG-based motor decoding has largely relied on linear, second-order spectral features. Here, we examine whether higher-order cross-frequency dynamics distinguish motor planning from execution during natural reach-to-grasp behavior. EEG was recorded in a cue-based paradigm during executed precision and power grips, enabling stage-resolved analysis of preparatory and execution-related neural activity. Cross-frequency bispectral analysis was used to compute bicoherence matrices across canonical frequency band pairs, from which magnitude- and phase-based features were extracted. Classification, permutation-based feature selection, and within-subject statistical testing showed that execution is characterized by substantially stronger and more discriminative nonlinear coupling than planning, with dominant contributions from beta- and gamma-driven interactions. In contrast, decoding of precision versus power grips achieved comparable performance during planning and execution, indicating that grasp-type representations emerge during planning and persist into execution. Spatial and spectral analyses further revealed that informative bispectral features reflect coordinated activity across prefrontal, central, and occipital regions. Despite substantial feature redundancy, effective dimensionality reduction preserved decoding performance. Together, these findings demonstrate that nonlinear cross-frequency coupling provides an interpretable and robust marker of motor planning and execution, extending bispectral EEG analysis to ecologically valid grasping and supporting its relevance for brain-computer interfaces and neuroprosthetic control.