Abstract:This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
Abstract:Labeling datasets is a noteworthy challenge in machine learning, both in terms of cost and time. This research, however, leverages an efficient answer. By exploring label propagation in semi-supervised learning, we can significantly reduce the number of labels required compared to traditional methods. We employ a transductive label propagation method based on the manifold assumption for text classification. Our approach utilizes a graph-based method to generate pseudo-labels for unlabeled data for the text classification task, which are then used to train deep neural networks. By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning, thereby reducing labeling costs. Based on previous successes in other domains, this study builds and evaluates this approach's effectiveness in sentiment analysis, presenting insights into semi-supervised learning.