Abstract:This work presents a fully quantum approach to support vector machine (SVM) learning by integrating gate-based quantum kernel methods with quantum annealing-based optimization. We explore the construction of quantum kernels using various feature maps and qubit configurations, evaluating their suitability through Kernel-Target Alignment (KTA). The SVM dual problem is reformulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem, enabling its solution via quantum annealers. Our experiments demonstrate that a high degree of alignment in the kernel and an appropriate regularization parameter lead to competitive performance, with the best model achieving an F1-score of 90%. These results highlight the feasibility of an end-to-end quantum learning pipeline and the potential of hybrid quantum architectures in quantum high-performance computing (QHPC) contexts.
Abstract:In this study, we initially investigate the application of a hybrid classical-quantum classifier (HCQC) for sentiment analysis, comparing its performance against the classical CPLEX classifier and the Transformer architecture. Our findings indicate that while the HCQC underperforms relative to the Transformer in terms of classification accuracy, but it requires significantly less time to converge to a reasonably good approximate solution. This experiment also reveals a critical bottleneck in the HCQC, whose architecture is partially undisclosed by the D-Wave property. To address this limitation, we propose a novel algorithm based on the algebraic decomposition of QUBO models, which enhances the time the quantum processing unit can allocate to problem-solving tasks.