Michael Pokorny
Abstract:While Chain-of-Thought (CoT) prompting advances LLM reasoning, challenges persist in consistency, accuracy, and self-correction, especially for complex or ethically sensitive tasks. Existing single-dimensional reflection methods offer insufficient improvements. We propose MyGO Poly-Reflective Chain-of-Thought (PR-CoT), a novel methodology employing structured multi-perspective reflection. After initial CoT, PR-CoT guides the LLM to self-assess its reasoning across multiple predefined angles: logical consistency, information completeness, biases/ethics, and alternative solutions. Implemented purely via prompt engineering, this process refines the initial CoT into a more robust and accurate final answer without model retraining. Experiments across arithmetic, commonsense, ethical decision-making, and logical puzzles, using GPT-three point five and GPT-four models, demonstrate PR-CoT's superior performance. It significantly outperforms traditional CoT and existing reflection methods in logical consistency and error correction, with notable gains in nuanced domains like ethical decision-making. Ablation studies, human evaluations, and qualitative analyses further validate the contribution of each reflection perspective and the overall efficacy of our poly-reflective paradigm in fostering more reliable LLM reasoning.
Abstract:Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.