Abstract:Lexical Simplification (LS) is the task of replacing complex for simpler words in a sentence whilst preserving the sentence's original meaning. LS is the lexical component of Text Simplification (TS) with the aim of making texts more accessible to various target populations. A past survey (Paetzold and Specia, 2017) has provided a detailed overview of LS. Since this survey, however, the AI/NLP community has been taken by storm by recent advances in deep learning, particularly with the introduction of large language models (LLM) and prompt learning. The high performance of these models sparked renewed interest in LS. To reflect these recent advances, we present a comprehensive survey of papers published between 2017 and 2023 on LS and its sub-tasks with a special focus on deep learning. We also present benchmark datasets for the future development of LS systems.
Abstract:The occurrence of unknown words in texts significantly hinders reading comprehension. To improve accessibility for specific target populations, computational modelling has been applied to identify complex words in texts and substitute them for simpler alternatives. In this paper, we present an overview of computational approaches to lexical complexity prediction focusing on the work carried out on English data. We survey relevant approaches to this problem which include traditional machine learning classifiers (e.g. SVMs, logistic regression) and deep neural networks as well as a variety of features, such as those inspired by literature in psycholinguistics as well as word frequency, word length, and many others. Furthermore, we introduce readers to past competitions and available datasets created on this topic. Finally, we include brief sections on applications of lexical complexity prediction, such as readability and text simplification, together with related studies on languages other than English.
Abstract:Language identification is an important first step in many IR and NLP applications. Most publicly available language identification datasets, however, are compiled under the assumption that the gold label of each instance is determined by where texts are retrieved from. Research has shown that this is a problematic assumption, particularly in the case of very similar languages (e.g., Croatian and Serbian) and national language varieties (e.g., Brazilian and European Portuguese), where texts may contain no distinctive marker of the particular language or variety. To overcome this important limitation, this paper presents DSL True Labels (DSL-TL), the first human-annotated multilingual dataset for language variety identification. DSL-TL contains a total of 12,900 instances in Portuguese, split between European Portuguese and Brazilian Portuguese; Spanish, split between Argentine Spanish and Castilian Spanish; and English, split between American English and British English. We trained multiple models to discriminate between these language varieties, and we present the results in detail. The data and models presented in this paper provide a reliable benchmark toward the development of robust and fairer language variety identification systems. We make DSL-TL freely available to the research community.
Abstract:We report findings of the TSAR-2022 shared task on multilingual lexical simplification, organized as part of the Workshop on Text Simplification, Accessibility, and Readability TSAR-2022 held in conjunction with EMNLP 2022. The task called the Natural Language Processing research community to contribute with methods to advance the state of the art in multilingual lexical simplification for English, Portuguese, and Spanish. A total of 14 teams submitted the results of their lexical simplification systems for the provided test data. Results of the shared task indicate new benchmarks in Lexical Simplification with English lexical simplification quantitative results noticeably higher than those obtained for Spanish and (Brazilian) Portuguese.
Abstract:This paper examines social web content moderation from two key perspectives: automated methods (machine moderators) and human evaluators (human moderators). We conduct a noise audit at an unprecedented scale using nine machine moderators trained on well-known offensive speech data sets evaluated on a corpus sampled from 92 million YouTube comments discussing a multitude of issues relevant to US politics. We introduce a first-of-its-kind data set of vicarious offense. We ask annotators: (1) if they find a given social media post offensive; and (2) how offensive annotators sharing different political beliefs would find the same content. Our experiments with machine moderators reveal that moderation outcomes wildly vary across different machine moderators. Our experiments with human moderators suggest that (1) political leanings considerably affect first-person offense perspective; (2) Republicans are the worst predictors of vicarious offense; (3) predicting vicarious offense for the Republicans is most challenging than predicting vicarious offense for the Independents and the Democrats; and (4) disagreement across political identity groups considerably increases when sensitive issues such as reproductive rights or gun control/rights are discussed. Both experiments suggest that offense, is indeed, highly subjective and raise important questions concerning content moderation practices.
Abstract:The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
Abstract:The presence of offensive language on social media is very common motivating platforms to invest in strategies to make communities safer. This includes developing robust machine learning systems capable of recognizing offensive content online. Apart from a few notable exceptions, most research on automatic offensive language identification has dealt with English and a few other high resource languages such as French, German, and Spanish. In this paper we address this gap by tackling offensive language identification in Marathi, a low-resource Indo-Aryan language spoken in India. We introduce the Marathi Offensive Language Dataset v.2.0 or MOLD 2.0 and present multiple experiments on this dataset. MOLD 2.0 is a much larger version of MOLD with expanded annotation to the levels B (type) and C (target) of the popular OLID taxonomy. MOLD 2.0 is the first hierarchical offensive language dataset compiled for Marathi, thus opening new avenues for research in low-resource Indo-Aryan languages. Finally, we also introduce SeMOLD, a larger dataset annotated following the semi-supervised methods presented in SOLID.
Abstract:The widespread of offensive content online has become a reason for great concern in recent years, motivating researchers to develop robust systems capable of identifying such content automatically. With the goal of carrying out a fair evaluation of these systems, several international competitions have been organized, providing the community with important benchmark data and evaluation methods for various languages. Organized since 2019, the HASOC (Hate Speech and Offensive Content Identification) shared task is one of these initiatives. In its fourth iteration, HASOC 2022 included three subtracks for English, Hindi, and Marathi. In this paper, we report the results of the HASOC 2022 Marathi subtrack which provided participants with a dataset containing data from Twitter manually annotated using the popular OLID taxonomy. The Marathi track featured three additional subtracks, each corresponding to one level of the taxonomy: Task A - offensive content identification (offensive vs. non-offensive); Task B - categorization of offensive types (targeted vs. untargeted), and Task C - offensive target identification (individual vs. group vs. others). Overall, 59 runs were submitted by 10 teams. The best systems obtained an F1 of 0.9745 for Subtrack 3A, an F1 of 0.9207 for Subtrack 3B, and F1 of 0.9607 for Subtrack 3C. The best performing algorithms were a mixture of traditional and deep learning approaches.
Abstract:Lexical simplification (LS) is the task of automatically replacing complex words for easier ones making texts more accessible to various target populations (e.g. individuals with low literacy, individuals with learning disabilities, second language learners). To train and test models, LS systems usually require corpora that feature complex words in context along with their candidate substitutions. To continue improving the performance of LS systems we introduce ALEXSIS-PT, a novel multi-candidate dataset for Brazilian Portuguese LS containing 9,605 candidate substitutions for 387 complex words. ALEXSIS-PT has been compiled following the ALEXSIS protocol for Spanish opening exciting new avenues for cross-lingual models. ALEXSIS-PT is the first LS multi-candidate dataset that contains Brazilian newspaper articles. We evaluated four models for substitute generation on this dataset, namely mDistilBERT, mBERT, XLM-R, and BERTimbau. BERTimbau achieved the highest performance across all evaluation metrics.
Abstract:Even in highly-developed countries, as many as 15-30\% of the population can only understand texts written using a basic vocabulary. Their understanding of everyday texts is limited, which prevents them from taking an active role in society and making informed decisions regarding healthcare, legal representation, or democratic choice. Lexical simplification is a natural language processing task that aims to make text understandable to everyone by replacing complex vocabulary and expressions with simpler ones, while preserving the original meaning. It has attracted considerable attention in the last 20 years, and fully automatic lexical simplification systems have been proposed for various languages. The main obstacle for the progress of the field is the absence of high-quality datasets for building and evaluating lexical simplification systems. We present a new benchmark dataset for lexical simplification in English, Spanish, and (Brazilian) Portuguese, and provide details about data selection and annotation procedures. This is the first dataset that offers a direct comparison of lexical simplification systems for three languages. To showcase the usability of the dataset, we adapt two state-of-the-art lexical simplification systems with differing architectures (neural vs.\ non-neural) to all three languages (English, Spanish, and Brazilian Portuguese) and evaluate their performances on our new dataset. For a fairer comparison, we use several evaluation measures which capture varied aspects of the systems' efficacy, and discuss their strengths and weaknesses. We find a state-of-the-art neural lexical simplification system outperforms a state-of-the-art non-neural lexical simplification system in all three languages. More importantly, we find that the state-of-the-art neural lexical simplification systems perform significantly better for English than for Spanish and Portuguese.