Abstract:Executing Spiking Neural Networks (SNNs) on neuromorphic hardware poses the problem of mapping neurons to cores. SNNs operate by propagating spikes between neurons that form a graph through synapses. Neuromorphic hardware mimics them through a network-on-chip, transmitting spikes, and a mesh of cores, each managing several neurons. Its operational cost is tied to spike movement and active cores. A mapping comprises two tasks: partitioning the SNN's graph to fit inside cores and placement of each partition on the hardware mesh. Both are NP-hard problems, and as SNNs and hardware scale towards billions of neurons, they become increasingly difficult to tackle effectively. In this work, we propose to raise the abstraction of SNNs from graphs to hypergraphs, redesigning mapping techniques accordingly. The resulting model faithfully captures the replication of spikes inside cores by exposing the notion of hyperedge co-membership between neurons. We further show that the overlap and locality of hyperedges strongly correlate with high-quality mappings, making these properties instrumental in devising mapping algorithms. By exploiting them directly, grouping neurons through shared hyperedges, communication traffic and hardware resource usage can be reduced be yond what just contracting individual connections attains. To substantiate this insight, we consider several partitioning and placement algorithms, some newly devised, others adapted from literature, and compare them over progressively larger and bio-plausible SNNs. Our results show that hypergraph based techniques can achieve better mappings than the state-of-the-art at several execution time regimes. Based on these observations, we identify a promising selection of algorithms to achieve effective mappings at any scale.