Abstract:In this paper, we present DIETA, a small, decoder-only Transformer model with 0.5 billion parameters, specifically designed and trained for Italian-English machine translation. We collect and curate a large parallel corpus consisting of approximately 207 million Italian-English sentence pairs across diverse domains, including parliamentary proceedings, legal texts, web-crawled content, subtitles, news, literature and 352 million back-translated data using pretrained models. Additionally, we create and release a new small-scale evaluation set, consisting of 450 sentences, based on 2025 WikiNews articles, enabling assessment of translation quality on contemporary text. Comprehensive evaluations show that DIETA achieves competitive performance on multiple Italian-English benchmarks, consistently ranking in the second quartile of a 32-system leaderboard and outperforming most other sub-3B models on four out of five test suites. The training script, trained models, curated corpus, and newly introduced evaluation set are made publicly available, facilitating further research and development in specialized Italian-English machine translation. https://github.com/pkasela/DIETA-Machine-Translation
Abstract:Large Language Models (LLMs) have shown impressive zero-shot performance across a variety of Natural Language Processing tasks, including document re-ranking. However, their effectiveness degrades on unseen tasks and domains, largely due to shifts in vocabulary and word distributions. In this paper, we investigate Task Arithmetic, a technique that combines the weights of LLMs pre-trained on different tasks or domains via simple mathematical operations, such as addition or subtraction, to adapt retrieval models without requiring additional fine-tuning. Our method is able to synthesize diverse tasks and domain knowledge into a single model, enabling effective zero-shot adaptation in different retrieval contexts. Extensive experiments on publicly available scientific, biomedical, and multilingual datasets show that our method improves state-of-the-art re-ranking performance by up to 18% in NDCG@10 and 15% in P@10. In addition to these empirical gains, our analysis provides insights into the strengths and limitations of Task Arithmetic as a practical strategy for zero-shot learning and model adaptation. We make our code publicly available at https://github.com/DetectiveMB/Task-Arithmetic-for-ZS-IR.