Abstract:We present the first theoretical framework for applying spiking neural networks (SNNs) to synthetic aperture radar (SAR) interferometric phase unwrapping. Despite extensive research in both domains, our comprehensive literature review confirms that SNNs have never been applied to phase unwrapping, representing a significant gap in current methodologies. As Earth observation data volumes continue to grow exponentially (with missions like NISAR expected to generate 100PB in two years) energy-efficient processing becomes critical for sustainable data center operations. SNNs, with their event-driven computation model, offer potential energy savings of 30-100x compared to conventional approaches while maintaining comparable accuracy. We develop spike encoding schemes specifically designed for wrapped phase data, propose SNN architectures that leverage the spatial propagation nature of phase unwrapping, and provide theoretical analysis of computational complexity and convergence properties. Our framework demonstrates how the temporal dynamics inherent in SNNs can naturally model the spatial continuity constraints fundamental to phase unwrapping. This work opens a new research direction at the intersection of neuromorphic computing and SAR interferometry, offering a complementary approach to existing algorithms that could enable more sustainable large-scale InSAR processing.
Abstract:The promise of "free and open" multi-terabyte datasets often collides with harsh realities. While these datasets may be technically accessible, practical barriers -- from processing complexity to hidden costs -- create a system that primarily serves well-funded institutions. This study examines accessibility challenges across web crawls, satellite imagery, scientific data, and collaborative projects, revealing a consistent two-tier system where theoretical openness masks practical exclusivity. Our analysis demonstrates that datasets marketed as "publicly accessible" typically require minimum investments of \$1,000+ for meaningful analysis, with complex processing pipelines demanding \$10,000-100,000+ in infrastructure costs. The infrastructure requirements -- distributed computing knowledge, domain expertise, and substantial budgets -- effectively gatekeep these datasets despite their "open" status, limiting practical accessibility to those with institutional support or substantial resources.