UC Irvine
Abstract:In this paper, we present a novel framework incorporating a combination of sparse models in different domains. We posit the observed data as generated from a linear combination of a sparse Gaussian Markov model (with a sparse precision matrix) and a sparse Gaussian independence model (with a sparse covariance matrix). We provide efficient methods for decomposition of the data into two domains, \viz Markov and independence domains. We characterize a set of sufficient conditions for identifiability and model consistency. Our decomposition method is based on a simple modification of the popular $\ell_1$-penalized maximum-likelihood estimator ($\ell_1$-MLE). We establish that our estimator is consistent in both the domains, i.e., it successfully recovers the supports of both Markov and independence models, when the number of samples $n$ scales as $n = \Omega(d^2 \log p)$, where $p$ is the number of variables and $d$ is the maximum node degree in the Markov model. Our conditions for recovery are comparable to those of $\ell_1$-MLE for consistent estimation of a sparse Markov model, and thus, we guarantee successful high-dimensional estimation of a richer class of models under comparable conditions. Our experiments validate these results and also demonstrate that our models have better inference accuracy under simple algorithms such as loopy belief propagation.