Abstract:Single-modality object tracking (e.g., RGB-only) encounters difficulties in challenging imaging conditions, such as low illumination and adverse weather conditions. To solve this, multimodal tracking (e.g., RGB-T models) aims to leverage complementary data such as thermal infrared features. While recent Vision Transformer-based multimodal trackers achieve strong performance, they are often computationally expensive due to large model sizes. In this work, we propose a novel lightweight RGB-T tracking algorithm based on Mobile Vision Transformers (MobileViT). Our tracker introduces a progressive fusion framework that jointly learns intra-modal and inter-modal interactions between the template and search regions using separable attention. This design produces effective feature representations that support more accurate target localization while achieving a small model size and fast inference speed. Compared to state-of-the-art efficient multimodal trackers, our model achieves comparable accuracy while offering significantly lower parameter counts (less than 4 million) and the fastest GPU inference speed of 122 frames per second. This paper is the first to propose a tracker using Mobile Vision Transformers for RGB-T tracking and multimodal tracking at large. Tracker code and model weights will be made publicly available upon acceptance.