Abstract:Realistic urban traffic simulation is essential for sustainable urban planning and the development of intelligent transportation systems. However, generating high-fidelity, time-varying traffic profiles that accurately reflect real-world conditions, especially in large-scale scenarios, remains a major challenge. Existing methods often suffer from limitations in accuracy, scalability, or raise privacy concerns due to centralized data processing. This work introduces DesRUTGe (Decentralized Realistic Urban Traffic Generator), a novel framework that integrates Deep Reinforcement Learning (DRL) agents with the SUMO simulator to generate realistic 24-hour traffic patterns. A key innovation of DesRUTGe is its use of Decentralized Federated Learning (DFL), wherein each traffic detector and its corresponding urban zone function as an independent learning node. These nodes train local DRL models using minimal historical data and collaboratively refine their performance by exchanging model parameters with selected peers (e.g., geographically adjacent zones), without requiring a central coordinator. Evaluated using real-world data from the city of Barcelona, DesRUTGe outperforms standard SUMO-based tools such as RouteSampler, as well as other centralized learning approaches, by delivering more accurate and privacy-preserving traffic pattern generation.
Abstract:A mobile ad hoc network (MANET) is a set of autonomous mobile devices connected by wireless links in a distributed manner and without a fixed infrastructure. Real-time multimedia services, such as video-streaming over MANETs, offers very promising applications, e.g. two members of a group of tourists who want to share a video transmitted through the MANET they form; a video-streaming service deployed over a MANET where users watch a film; among other examples. On the other hand, social web technologies, where people actively interact online with others through social networks, are leading to a socialization of networks. Information of interaction among users is being used to provide socially-enhanced software. To achieve this, we need to know the strength of the relationship between a given user and each user they interact with. This strength of the relationship can be measured through a concept called tie strength (TS), first introduced by Mark Granovetter in 1973. In this article, we modify our previous proposal named multipath multimedia dynamic source routing (MMDSR) protocol to include a social metric TS in the decisions taken by the forwarding algorithm. We find a trade-off between the quality of service (QoS) and the trust level between users who form the forwarding path in the MANET. Our goal is to increase the trust metric while the QoS is not affected significantly.