Abstract:Implicit SDF-based methods for single-view 3D reconstruction achieve high-quality surfaces but require large labeled datasets, limiting their scalability. We propose MetaSSP, a novel semi-supervised framework that exploits abundant unlabeled images. Our approach introduces gradient-based parameter importance estimation to regularize adaptive EMA updates and an SDF-aware pseudo-label weighting mechanism combining augmentation consistency with SDF variance. Beginning with a 10% supervised warm-up, the unified pipeline jointly refines labeled and unlabeled data. On the Pix3D benchmark, our method reduces Chamfer Distance by approximately 20.61% and increases IoU by around 24.09% compared to existing semi-supervised baselines, setting a new state of the art.
Abstract:Single-view 3D reconstruction in complex real-world scenes is challenging due to noise, object diversity, and limited dataset availability. To address these challenges, we propose MGP-KAD, a novel multimodal feature fusion framework that integrates RGB and geometric prior to enhance reconstruction accuracy. The geometric prior is generated by sampling and clustering ground-truth object data, producing class-level features that dynamically adjust during training to improve geometric understanding. Additionally, we introduce a hybrid decoder based on Kolmogorov-Arnold Networks (KAN) to overcome the limitations of traditional linear decoders in processing complex multimodal inputs. Extensive experiments on the Pix3D dataset demonstrate that MGP-KAD achieves state-of-the-art (SOTA) performance, significantly improving geometric integrity, smoothness, and detail preservation. Our work provides a robust and effective solution for advancing single-view 3D reconstruction in complex scenes.
Abstract:The precise reconstruction of 3D objects from a single RGB image in complex scenes presents a critical challenge in virtual reality, autonomous driving, and robotics. Existing neural implicit 3D representation methods face significant difficulties in balancing the extraction of global and local features, particularly in diverse and complex environments, leading to insufficient reconstruction precision and quality. We propose M3D, a novel single-view 3D reconstruction framework, to tackle these challenges. This framework adopts a dual-stream feature extraction strategy based on Selective State Spaces to effectively balance the extraction of global and local features, thereby improving scene comprehension and representation precision. Additionally, a parallel branch extracts depth information, effectively integrating visual and geometric features to enhance reconstruction quality and preserve intricate details. Experimental results indicate that the fusion of multi-scale features with depth information via the dual-branch feature extraction significantly boosts geometric consistency and fidelity, achieving state-of-the-art reconstruction performance.