Abstract:We propose DeCoDi, a debiasing procedure for text-to-image diffusion-based models that changes the inference procedure, does not significantly change image quality, has negligible compute overhead, and can be applied in any diffusion-based image generation model. DeCoDi changes the diffusion process to avoid latent dimension regions of biased concepts. While most deep learning debiasing methods require complex or compute-intensive interventions, our method is designed to change only the inference procedure. Therefore, it is more accessible to a wide range of practitioners. We show the effectiveness of the method by debiasing for gender, ethnicity, and age for the concepts of nurse, firefighter, and CEO. Two distinct human evaluators manually inspect 1,200 generated images. Their evaluation results provide evidence that our method is effective in mitigating biases based on gender, ethnicity, and age. We also show that an automatic bias evaluation performed by the GPT4o is not significantly statistically distinct from a human evaluation. Our evaluation shows promising results, with reliable levels of agreement between evaluators and more coverage of protected attributes. Our method has the potential to significantly improve the diversity of images it generates by diffusion-based text-to-image generative models.
Abstract:Transformer-based language models rely on positional encoding (PE) to handle token order and support context length extrapolation. However, existing PE methods lack theoretical clarity and rely on limited evaluation metrics to substantiate their extrapolation claims. We propose the Bayesian Attention Mechanism (BAM), a theoretical framework that formulates positional encoding as a prior within a probabilistic model. BAM unifies existing methods (e.g., NoPE and ALiBi) and motivates a new Generalized Gaussian positional prior that substantially improves long-context generalization. Empirically, BAM enables accurate information retrieval at $500\times$ the training context length, outperforming previous state-of-the-art context length generalization in long context retrieval accuracy while maintaining comparable perplexity and introducing minimal additional parameters.
Abstract:Despite being responsible for state-of-the-art results in several computer vision and natural language processing tasks, neural networks have faced harsh criticism due to some of their current shortcomings. One of them is that neural networks are correlation machines prone to model biases within the data instead of focusing on actual useful causal relationships. This problem is particularly serious in application domains affected by aspects such as race, gender, and age. To prevent models from incurring on unfair decision-making, the AI community has concentrated efforts in correcting algorithmic biases, giving rise to the research area now widely known as fairness in AI. In this survey paper, we provide an in-depth overview of the main debiasing methods for fairness-aware neural networks in the context of vision and language research. We propose a novel taxonomy to better organize the literature on debiasing methods for fairness, and we discuss the current challenges, trends, and important future work directions for the interested researcher and practitioner.