Abstract:Training data influence estimation methods quantify the contribution of training documents to a model's output, making them a promising source of information for example-based explanations. As humans cannot interpret thousands of documents, only a small subset of the training data can be presented as an explanation. Although the choice of which documents to include directly affects explanation quality, previous evaluations of such systems have largely ignored any selection strategies. To address this, we propose a novel selection relevance score, a retraining-free metric that quantifies how useful a set of examples is for explaining a model's output. We validate this score through fine-tuning experiments, confirming that it can predict whether a set of examples supports or undermines the model's predictions. Using this metric, we further show that common selection strategies often underperform random selection. Motivated by this finding, we propose a strategy that balances influence and representativeness, enabling better use of selection budgets than naively selecting the highest-ranking examples.
Abstract:The increasing difficulty to distinguish language-model-generated from human-written text has led to the development of detectors of machine-generated text (MGT). However, in many contexts, a black-box prediction is not sufficient, it is equally important to know on what grounds a detector made that prediction. Explanation methods that estimate feature importance promise to provide indications of which parts of an input are used by classifiers for prediction. However, the quality of different explanation methods has not previously been assessed for detectors of MGT. This study conducts the first systematic evaluation of explanation quality for this task. The dimensions of faithfulness and stability are assessed with five automated experiments, and usefulness is evaluated in a user study. We use a dataset of ChatGPT-generated and human-written documents, and pair predictions of three existing language-model-based detectors with the corresponding SHAP, LIME, and Anchor explanations. We find that SHAP performs best in terms of faithfulness, stability, and in helping users to predict the detector's behavior. In contrast, LIME, perceived as most useful by users, scores the worst in terms of user performance at predicting the detectors' behavior.