Abstract:Extrinsic Calibration represents the cornerstone of autonomous driving. Its accuracy plays a crucial role in the perception pipeline, as any errors can have implications for the safety of the vehicle. Modern sensor systems collect different types of data from the environment, making it harder to align the data. To this end, we propose a target-based extrinsic calibration system tailored for a multi-LiDAR and multi-camera sensor suite. This system enables cross-calibration between LiDARs and cameras with limited prior knowledge using a custom ChArUco board and a tailored nonlinear optimization method. We test the system with real-world data gathered in a warehouse. Results demonstrated the effectiveness of the proposed method, highlighting the feasibility of a unique pipeline tailored for various types of sensors.
Abstract:The development of autonomous robotic systems offers significant potential for performing complex tasks with precision and consistency. Recent advances in Artificial Intelligence (AI) have enabled more capable intelligent automation systems, addressing increasingly complex challenges. However, this progress raises questions about human roles in such systems. Human-Centered AI (HCAI) aims to balance human control and automation, ensuring performance enhancement while maintaining creativity, mastery, and responsibility. For real-world applications, autonomous robots must balance task performance with reliability, safety, and trustworthiness. Integrating HCAI principles enhances human-robot collaboration and ensures responsible operation. This paper presents a bibliometric analysis of intelligent autonomous robotic systems, utilizing SciMAT and VOSViewer to examine data from the Scopus database. The findings highlight academic trends, emerging topics, and AI's role in self-adaptive robotic behaviour, with an emphasis on HCAI architecture. These insights are then projected onto the IBM MAPE-K architecture, with the goal of identifying how these research results map into actual robotic autonomous systems development efforts for real-world scenarios.