Abstract:Large language models (LLMs) excel at rapid generation of text and multimodal content, yet they falter on transaction-style planning that demands ACID-like guarantees and real-time disruption recovery. We present Adaptive LLM Agent System (ALAS), a framework that tackles four fundamental LLM deficits: (i) absence of self-verification, (ii) context erosion, (iii) next-token myopia, and (iv) lack of persistent state. ALAS decomposes each plan into role-specialized agents, equips them with automatic state tracking, and coordinates them through a lightweight protocol. When disruptions arise, agents apply history-aware local compensation, avoiding costly global replanning and containing cascade effects. On real-world, large-scale job-shop scheduling benchmarks, ALAS sets new best results for static sequential planning and excels in dynamic reactive scenarios with unexpected disruptions. These gains show that principled modularization plus targeted compensation can unlock scalable and resilient planning with LLMs.
Abstract:This benchmark suite provides a comprehensive evaluation framework for assessing both individual LLMs and multi-agent systems in real-world planning scenarios. The suite encompasses eleven designed problems that progress from basic to highly complex, incorporating key aspects such as multi-agent coordination, inter-agent dependencies, and dynamic environmental disruptions. Each problem can be scaled along three dimensions: the number of parallel planning threads, the complexity of inter-dependencies, and the frequency of unexpected disruptions requiring real-time adaptation. The benchmark includes detailed specifications, evaluation metrics, and baseline implementations using contemporary frameworks like LangGraph, enabling rigorous testing of both single-agent and multi-agent planning capabilities. Through standardized evaluation criteria and scalable complexity, this benchmark aims to drive progress in developing more robust and adaptable AI planning systems for real-world applications.