Abstract:Neural Audio Codecs (NACs) have become increasingly adopted in speech processing tasks due to their excellent rate-distortion performance and compatibility with Large Language Models (LLMs) as discrete feature representations for audio generation. While most existing codecs rely on Residual Vector Quantization (RVQ), Finite Scalar Quantization (FSQ) has recently emerged as a compelling alternative that simplifies training and natively supports single codebooks. We introduce NeuCodec, an FSQ-based NAC, and show that FSQ encodes baked-in redundancy which produces an encoding which is robust when transmitted through noisy channels. First, through an encoder distillation experiment, we show that two different encoders can learn to encode identical audio into vastly different code sequences whilst maintaining comparable reconstruction quality with the same quantizer and decoder. Second, we demonstrate that FSQ has vastly superior bit-level perturbation robustness by comparing the performance of RVQ and FSQ codecs when simulating the transmission of code sequences through a noisy channel.
Abstract:Robust uncertainty estimations are necessary in safety-critical applications of Deep Learning. One such example is the semantic segmentation of medical images, whilst deep-learning approaches have high performance in such tasks they lack interpretability as they give no indication of their confidence when making classification decisions. Robust and interpretable segmentation is a critical first stage in automatically screening for pathologies hence the optimal solution is one which can provide high accuracy but also capture the underlying uncertainty. In this work, we present an uncertainty-aware segmentation model, BA U-Net, for use on MRI data that incorporates Bayesian Neural Networks and Attention Mechanisms to provide accurate and interpretable segmentations. We evaluated our model on the publicly available BraTS 2020 dataset using F1 Score and Intersection Over Union (IoU) as evaluation metrics.