Abstract:Depression is a major mental health condition that severely impacts the emotional and physical well-being of individuals. The simple nature of data collection from social media platforms has attracted significant interest in properly utilizing this information for mental health research. A Multimodal Depression Detection Network (MDD-Net), utilizing acoustic and visual data obtained from social media networks, is proposed in this work where mutual transformers are exploited to efficiently extract and fuse multimodal features for efficient depression detection. The MDD-Net consists of four core modules: an acoustic feature extraction module for retrieving relevant acoustic attributes, a visual feature extraction module for extracting significant high-level patterns, a mutual transformer for computing the correlations among the generated features and fusing these features from multiple modalities, and a detection layer for detecting depression using the fused feature representations. The extensive experiments are performed using the multimodal D-Vlog dataset, and the findings reveal that the developed multimodal depression detection network surpasses the state-of-the-art by up to 17.37% for F1-Score, demonstrating the greater performance of the proposed system. The source code is accessible at https://github.com/rezwanh001/Multimodal-Depression-Detection.
Abstract:Computational tools for forecasting yields and prices for fresh produce have been based on traditional machine learning approaches or time series modelling. We propose here an alternate approach based on deep learning algorithms for forecasting strawberry yields and prices in Santa Barbara county, California. Building the proposed forecasting model comprises three stages: first, the station-based ensemble model (ATT-CNN-LSTM-SeriesNet_Ens) with its compound deep learning components, SeriesNet with Gated Recurrent Unit (GRU) and Convolutional Neural Network LSTM with Attention layer (Att-CNN-LSTM), are trained and tested using the station-based soil temperature and moisture data of SantaBarbara as input and the corresponding strawberry yields or prices as output. Secondly, the remote sensing ensemble model (SIM_CNN-LSTM_Ens), which is an ensemble model of Convolutional NeuralNetwork LSTM (CNN-LSTM) models, is trained and tested using satellite images of the same county as input mapped to the same yields and prices as output. These two ensembles forecast strawberry yields and prices with minimal forecasting errors and highest model correlation for five weeks ahead forecasts.Finally, the forecasts of these two models are ensembled to have a final forecasted value for yields and prices by introducing a voting ensemble. Based on an aggregated performance measure (AGM), it is found that this voting ensemble not only enhances the forecasting performance by 5% compared to its best performing component model but also outperforms the Deep Learning (DL) ensemble model found in literature by 33% for forecasting yields and 21% for forecasting prices