Abstract:The exponential growth in Large Language Model (LLM) deployment has intensified the need for efficient model compression techniques to reduce computational and memory costs. While pruning and quantization have shown promise, their combined potential remains largely unexplored. In this paper, we examine joint compression and how strategically combining pruning and quantization could yield superior performance-to-compression ratios compared to single-method approaches. Recognizing the challenges in accurately assessing LLM performance, we address key limitations of previous evaluation frameworks and introduce the Semantic Retention Compression Rate (SrCr), a novel metric that quantifies the trade-off between model compression and semantic preservation, facilitating the optimization of pruning-quantization configurations. Experiments demonstrate that our recommended combination achieves, on average, a 20% performance increase compared to an equivalent quantization-only model at the same theoretical compression rate.
Abstract:Artificial intelligence (AI) is rapidly transforming education, presenting unprecedented opportunities for personalized learning and streamlined content creation. However, realizing the full potential of AI in educational settings necessitates careful consideration of the quality, cognitive depth, and ethical implications of AI-generated materials. This paper synthesizes insights from four related studies to propose a comprehensive framework for enhancing AI-driven educational tools. We integrate cognitive assessment frameworks (Bloom's Taxonomy and SOLO Taxonomy), linguistic analysis of AI-generated feedback, and ethical design principles to guide the development of effective and responsible AI tools. We outline a structured three-phase approach encompassing cognitive alignment, linguistic feedback integration, and ethical safeguards. The practical application of this framework is demonstrated through its integration into OneClickQuiz, an AI-powered Moodle plugin for quiz generation. This work contributes a comprehensive and actionable guide for educators, researchers, and developers aiming to harness AI's potential while upholding pedagogical and ethical standards in educational content generation.
Abstract:Artificial Intelligence (AI)-generated feedback in educational settings has garnered considerable attention due to its potential to enhance learning outcomes. However, a comprehensive understanding of the linguistic characteristics of AI-generated feedback, including readability, lexical richness, and adaptability across varying challenge levels, remains limited. This study delves into the linguistic and structural attributes of feedback generated by Google's Gemini 1.5-flash text model for computer science multiple-choice questions (MCQs). A dataset of over 1,200 MCQs was analyzed, considering three difficulty levels (easy, medium, hard) and three feedback tones (supportive, neutral, challenging). Key linguistic metrics, such as length, readability scores (Flesch-Kincaid Grade Level), vocabulary richness, and lexical density, were computed and examined. A fine-tuned RoBERTa-based multi-task learning (MTL) model was trained to predict these linguistic properties, achieving a Mean Absolute Error (MAE) of 2.0 for readability and 0.03 for vocabulary richness. The findings reveal significant interaction effects between feedback tone and question difficulty, demonstrating the dynamic adaptation of AI-generated feedback within diverse educational contexts. These insights contribute to the development of more personalized and effective AI-driven feedback mechanisms, highlighting the potential for improved learning outcomes while underscoring the importance of ethical considerations in their design and deployment.
Abstract:In this paper we address the problem of dot painting on a wall by a quadrotor Micro Air Vehicle (MAV), using on-board low cost sensors (monocular camera and IMU) for localization. A method is proposed to cope with uncertainties on the initial positioning of the MAV with respect to the wall and to deal with walls composed of multiple segments. This method is based on an online estimation algorithm that makes use of information of physical contacts detected by the drone during the flight to improve the positioning accuracy of the painted dots. Simulation results are presented to assess quantitatively the efficiency of the proposed approaches.