Abstract:This study offers a new perspective on the depth-versus-breadth debate in innovation strategy, by modeling inventive search within dynamic collective knowledge systems, and underscoring the importance of timing for technological impact. Using frontier machine learning to project patent citation networks in hyperbolic space, we analyze 4.9 million U.S. patents to examine how search strategies give rise to distinct temporal patterns in impact accumulation. We find that inventions based on deep search, which relies on a specialized understanding of complex recombination structures, drive higher short-term impact through early adoption within specialized communities, but face diminishing returns as innovations become "locked-in" with limited diffusion potential. Conversely, when inventions are grounded in broad search that spans disparate domains, they encounter initial resistance but achieve wider diffusion and greater long-term impact by reaching cognitively diverse audiences. Individual inventions require both depth and breadth for stable impact. Organizations can strategically balance approaches across multiple inventions: using depth to build reliable technological infrastructure while pursuing breadth to expand applications. We advance innovation theory by demonstrating how deep and broad search strategies distinctly shape the timing and trajectory of technological impact, and how individual inventors and organizations can leverage these mechanisms to balance exploitation and exploration.
Abstract:Existing studies of innovation emphasize the power of social structures to shape innovation capacity. Emerging machine learning approaches, however, enable us to model innovators' personal perspectives and interpersonal innovation opportunities as a function of their prior trajectories of experience. We theorize then quantify subjective perspectives and innovation opportunities based on innovator positions within the geometric space of concepts inscribed by dynamic language representations. Using data on millions of scientists, inventors, writers, entrepreneurs, and Wikipedia contributors across the creative domains of science, technology, film, entrepreneurship, and Wikipedia, here we show that measured subjective perspectives anticipate what ideas individuals and groups creatively attend to and successfully combine in future. When perspective and background diversity are decomposed as the angular difference between collaborators' perspectives on their creation and between their experiences, the former consistently anticipates creative achievement while the latter portends its opposite, across all cases and time periods examined. We analyze a natural experiment and simulate creative collaborations between AI (large language model) agents designed with various perspective and background diversity, which are consistent with our observational findings. We explore mechanisms underlying these findings and identify how successful collaborators leverage common language to weave together diverse experience obtained through trajectories of prior work that converge to provoke one another and innovate. We explore the importance of these findings for team assembly and research policy.