Abstract:Existing Unmanned Aerial Vehicle (UAV) Vision-Language Navigation (VLN) datasets face issues such as dependence on virtual environments, lack of naturalness in instructions, and limited scale. To address these challenges, we propose AirNav, a large-scale UAV VLN benchmark constructed from real urban aerial data, rather than synthetic environments, with natural and diverse instructions. Additionally, we introduce the AirVLN-R1, which combines Supervised Fine-Tuning and Reinforcement Fine-Tuning to enhance performance and generalization. The feasibility of the model is preliminarily evaluated through real-world tests. Our dataset and code are publicly available.