Universidade Aberta, INESC TEC
Abstract:Achieving consistency in immersive learning case descriptions is essential but challenging due to variations in research focus, methodology, and researchers' background. We address these challenges by leveraging the Immersive Learning Case Sheet (ILCS), a methodological instrument to standardize case descriptions, that we applied to an immersive learning case on ancient Greek technology in VRChat. Research team members had differing levels of familiarity with the ILCS and the case content, so we developed a custom ChatGPT assistant to facilitate consistent terminology and process alignment across the team. This paper constitutes an example of how structured case reports can be a novel contribution to immersive learning literature. Our findings demonstrate how the ILCS supports structured reflection and interpretation of the case. Further we report that the use of a ChatGPT assistant significantly sup-ports the coherence and quality of the team members development of the final ILCS. This exposes the potential of employing AI-driven tools to enhance collaboration and standardization of research practices in qualitative educational research. However, we also discuss the limitations and challenges, including reliance on AI for interpretive tasks and managing varied levels of expertise within the team. This study thus provides insights into the practical application of AI in standardizing immersive learning research processes.
Abstract:This work reflects upon what Immersion can mean from the perspective of an Artificial Intelligence (AI). Applying the lens of immersive learning theory, it seeks to understand whether this new perspective supports ways for AI participation in cognitive ecologies. By treating AI as a participant rather than a tool, it explores what other participants (humans and other AIs) need to consider in environments where AI can meaningfully engage and contribute to the cognitive ecology, and what the implications are for designing such learning environments. Drawing from the three conceptual dimensions of immersion - System, Narrative, and Agency - this work reinterprets AIs in immersive learning contexts. It outlines practical implications for designing learning environments where AIs are surrounded by external digital services, can interpret a narrative of origins, changes, and structural developments in data, and dynamically respond, making operational and tactical decisions that shape human-AI collaboration. Finally, this work suggests how these insights might influence the future of AI training, proposing that immersive learning theory can inform the development of AIs capable of evolving beyond static models. This paper paves the way for understanding AI as an immersive learner and participant in evolving human-AI cognitive ecosystems.