Abstract:The increasing complexity of clinical decision-making, alongside the rapid expansion of electronic health records (EHR), presents both opportunities and challenges for delivering data-informed care. This paper proposes a clinical decision support system powered by Large Language Models (LLMs) to assist prescribing clinicians. The system generates therapeutic suggestions by analyzing historical EHR data, including patient demographics, presenting complaints, clinical symptoms, diagnostic information, and treatment histories. The framework integrates natural language processing with structured clinical inputs to produce contextually relevant recommendations. Rather than replacing clinician judgment, it is designed to augment decision-making by retrieving and synthesizing precedent cases with comparable characteristics, drawing on local datasets or federated sources where applicable. At its core, the system employs a retrieval-augmented generation (RAG) pipeline that harmonizes unstructured narratives and codified data to support LLM-based inference. We outline the system's technical components, including representation representation alignment and generation strategies. Preliminary evaluations, conducted with de-identified and synthetic clinical datasets, examine the clinical plausibility and consistency of the model's outputs. Early findings suggest that LLM-based tools may provide valuable decision support in prescribing workflows when appropriately constrained and rigorously validated. This work represents an initial step toward integration of generative AI into real-world clinical decision-making with an emphasis on transparency, safety, and alignment with established practices.




Abstract:Data protection and privacy is becoming increasingly crucial in the digital era. Numerous companies depend on third-party vendors and service providers to carry out critical functions within their operations, encompassing tasks such as data handling and storage. However, this reliance introduces potential vulnerabilities, as these vendors' security measures and practices may not always align with the standards expected by regulatory bodies. Businesses are required, often under the penalty of law, to ensure compliance with the evolving regulatory rules. Interpreting and implementing these regulations pose challenges due to their complexity. Regulatory documents are extensive, demanding significant effort for interpretation, while vendor-drafted privacy policies often lack the detail required for full legal compliance, leading to ambiguity. To ensure a concise interpretation of the regulatory requirements and compliance of organizational privacy policy with said regulations, we propose a Large Language Model (LLM) and Semantic Web based approach for privacy compliance. In this paper, we develop the novel Privacy Policy Compliance Verification Knowledge Graph, PrivComp-KG. It is designed to efficiently store and retrieve comprehensive information concerning privacy policies, regulatory frameworks, and domain-specific knowledge pertaining to the legal landscape of privacy. Using Retrieval Augmented Generation, we identify the relevant sections in a privacy policy with corresponding regulatory rules. This information about individual privacy policies is populated into the PrivComp-KG. Combining this with the domain context and rules, the PrivComp-KG can be queried to check for compliance with privacy policies by each vendor against relevant policy regulations. We demonstrate the relevance of the PrivComp-KG, by verifying compliance of privacy policy documents for various organizations.